Embryogenesis in individuals with mutations or deficiencies of the genes in the polytene interval 84A–84B1,2 of Drosophila melanogaster was examined using scanning electron microscopy (SEM). The developmental function of this region of chromosome 3 is of particular interest since it contains the Antennapedia Gene Complex (ANT-C), a gene cluster that includes the homoeotic proboscipedia ( pb), Sex combs reduced ( Scr), and Antennapedia ( Antp) loci. The results of SEM studies, clonal analyses, and temperature-shift experiments show that the fushi tarazu ( ftz) and zerknullt ( zen) genes, which map between pb and Scr, are involved in processes initiated during embryogenesis. The activity of ftz + appears to be required within the first 4 hr of development for the establishment of the proper number of segments in the embryonic germ band. Individuals with ftz mutations or deficiencies produce only half the normal number of segments. Each of the segments is twice the normal width and is apparently comprised of cells that would normally form two separate metameres. The zen allele is required from about 2–4 hr of embryogenesis. Mutations of this gene result in disturbances of morphogenetic movements during gastrulation. The mutant phenotype is characterized by the absence of the optic lobe, defects in involution of the head segments, and in some cases, failure of germ band elongation. A requirement during embryogenesis for the activities of other genes residing in the 84A–84B1,2 polytene interval is suggested by the phenotypes of individuals heterozygous or homozygous for chromosomal deficiencies. Using the deficiencies Df(3R)Antp Ns+R17, Df(3R)Scr , and Df(3R)Scx W+RX2 , we examined the effects of deleting the distal portions or all of the 84A–84B1,2 interval. The defects in deletion heterozygotes suggest that the wild-type activity of some gene(s) other than zen, within or just adjacent to the 84B1,2 doublet, is required to complete normal head involution. The deletion of all the loci in the 84A5–84B1,2 interval results in grossly abnormal morphology and morphogenesis of the gnathocephalic appendages of the embryo. From these studies we conclude that mutations and deficiencies of genes associated with the ANT-C have profound effects on embryogenesis. The mutant phenotypes suggest, in addition to ensuring proper segment identity, the wild-type alleles of the 84A–84B1,2 genes are necessary for normal segmentation and elongation of the germ band and normal head involution.
Read full abstract