The deformation behavior of short-chain branched, amorphous polyethylene (PE) was investigated using united atom molecular dynamics (MD) simulations under uniaxial stretching. Our research reported in this paper examined the internal mechanisms underlying the mechanical response of the PE by analyzing potential energies, dihedral angle distributions, chain orientation and entanglements. The findings indicated that the short-chain branching generally enhanced Young’s modulus, except for sample B60 with a critical ethyl branch content of 60/1000 (60 ethyl branches per 1000 backbone carbons). The Young’s modulus of B60 was the local minimum value in the various samples. Analysis of the evolution of dihedral angles shows that the short-chain branching hinders the transition from gauche to trans configurations, leading to a decrease in the trans population as the branch content increases. Regarding the sample B60 with critical branch content 60/1000, the orientation parameter and entanglement parameter of the molecular chains along the backbone were lowest in the initial structure, and the efficiency of chain disentanglement was at its lowest during deformation. The simulation results elucidated the deformation mechanism related to the conformational evolution of the molecular chains, which can provide atomic-scale insights into the mechanical properties and processability of branched polyethylene, thereby allowing for optimization in its design and application.