The aim of this investigation was to evaluate the effect of infrared (λ 846±20nm) LED irradiation on the expression profile of the extracellular matrix protein components, tenascin and fibronectin on skin wounds induced in well nourished and malnourished rats. Eighteen albino rats (21 days old) were randomly divided into a well-nourished group (standard diet) and a malnourished group (regional basic diet). After receiving the diet for 70 days, skin wounds were created and the animals were subdivided into three groups: well-nourished control (n=6), malnourished control (n=6), and malnourished+LED irradiated (λ 846±20nm, 100mW, 4J/cm2) (n=6). The animals were sacrificed 3 and 7 days after injury and histological sections were immunostained for both proteins. They were examined for the presence, intensity, distribution and pattern of immunolabeling. At 3 days, the distribution of tenascin was shown to be greater in the wound bed of malnourished animals compared to the well-nourished group. The intensity and distribution of tenascin was shown to be lower in the malnourished LED irradiated group compared to the malnourished control. There was a significant difference regarding the presence of fibronectin in the malnourished and well-nourished groups after 7 days (p=0.03). The intensity of fibronectin was slight (100%) in the irradiated group and moderate to intense in the malnourished control group. The results of the present study indicate that infrared LED irradiation modulates positively the expression of tenascin and particularly fibronectin.
Read full abstract