The fiber reinforced resin-based composite materials have the characteristics of high specific modulus and strength, impact resistance, creep resistance, and seismic resistance, which are widely used in the aviation, automotive, and marine industries. As one of the advanced composite material forming technologies, the fiber placement can manufacture the large-curvature composite parts with the high efficiency, high quality, high repeatability and low cost. The rubber compaction roller will deform under the pressure, in which the deformation will increase the contact area between the pressure roller and the substrate, and improve the interlaminar bonding degree. Due to the different deformation of the compaction roller caused by the different laying pressures, the deformation process of the fiber compaction roller was analyzed. By establishing the pressure stress distribution model for the compaction roller, the contact pressure, the downward deformation of the compaction roller and the deformation contact area between the compaction roller and the substrate are obtained. The mapping relationship among the contact curves of the substrate is verified by using the experiments.