A comprehensive multi-scale computational strategy was developed in this study based on mass transfer and machine learning for simulation of drug concentration distribution in a biomaterial matrix. The controlled release was modeled and validated via the hybrid model. Mass transfer equations along with kinetics models were solved numerically and the results were then used for machine learning models. We investigated the performance of three regression models, namely Decision Tree (DT), Random Forest (RF), and Extra Tree (ET) in predicting medicine concentration (C) based on r and z data. Hyper-parameter optimization is conducted using Glowworm Swarm Optimization (GSO). Results revealed high predictive accuracy across all models, with ET demonstrating superior performance, achieving a coefficient of determination value (R2) of 0.99854, an RMSE of 1.1446E-05, and a maximum error of 6.49087E-05. DT and RF also exhibit notable performance, with coefficients of determination equal to 0.99571 and 0.99655, respectively. These results highlight the effectiveness of ensemble tree-based methods in accurately predicting chemical concentrations, with Extra Tree (ET) Regression emerging as the most promising model for this specific dataset.
Read full abstract