Many behavioral effects of testosterone on hypothalamic and limbic brain areas are mediated by the action, at the cellular level, of estrogens derived from local testosterone aromatization. Aromatase activity and cells containing the aromatase protein and mRNA have accordingly been identified in the brain areas involved in the control of behavior. The presence of an unusually high level of aromatase activity has been detected in the telencephalon of one songbird species, the zebra finch (Taeniopygia guttata), and it is suspected that this high telencephalic aromatase may be a specific feature of songbirds but this idea is supported only by few experimental data. The distribution of aromatase activity in the brain of zebra finches and of one nonsongbird species, the Japanese quail (Coturnix japonica), was compared with the distribution of aromatase activity in the brain of four species of free-living European songbirds, the chaffinch (Fringilla coelebs, Fringillidae), willow warbler (Phylloscopus trochilus, Sylviidae), great tit (Parus major, Paridae), and pied flycatcher (Ficedula hypoleuca, Muscicapidae). High levels of enzyme activity were observed in the diencephalon of all species. The high levels of aromatase activity that had been observed in the zebra finch telencephalon and were thought to be typical of songbirds were also present in the four wild oscine species but not in quail. None of these songbird species had, however, a telencephalic aromatase activity as high as that in the zebra finch, which may represent an extreme as far as the activity of this enzyme in the telencephalon is concerned. Measurable levels of aromatase activity were also detected in all songbird species in the liver and in the three other brain areas that were assayed, the optic lobes, cerebellum, and brain stem, with the exception of the cerebellum in willow warblers and quail, but no detectable activity was observed in the testes, muscle, and adrenals of all species. Additional studies will be needed to identify the functional significance of estrogen synthesis in areas that are not classically known to be implicated in the control of reproduction. Within a given species, the birds that had the highest plasma testosterone levels also displayed the highest levels of diencephalic aromatase activity and the interspecies differences in the two variables were positively related. This raises the possibility that the absolute level of diencephalic aromatase represents a species-specific characteristic under the control of plasma testosterone levels. There was, in contrast, no correlation between the aromatase activity in the telencephalon and the plasma testosterone levels but the enzyme activity was correlated with the plasma levels of luteinizing hormone. These data bring additional support to the idea that the diencephalic and telencephalic aromatases are controlled by independent mechanisms.
Read full abstract