To determine their involvement in the onset of the disease, we investigated the changing levels of liver fibrosis-related proteins, namely, type-I collagen, α-smooth muscle actin (α-SMA), and transforming growth factor β1 and β3 (TGF-β1, β3). The four groups of Sprague-Dawley (SD) rats were involved in the study, namely, (i) normal control group, (ii) high-fat diet group (HFD), (iii) carbon tetrachloride (CCl4) group, and (iv) NAFLD group (animal model) which were chosen at random. The NAFLD model received HFD combined with subcutaneous injection of small doses of CCl4. Histopathological examination confirmed extent of liver fibrosis, while other immunological and molecular methods were used to evaluate expression and distribution of α-SMA, type I collagen TGF-β1 and TGF-β3, at both m-RNA and protein levels. In contrast to the normal control group, the NAFLD group showed moderately elevated expressions of TGF-β1, α-SMA, and type I collagen, which was proportional on temporal scale of NAFLD persistence in the model (P < 0.05). In the early phage of NAFLD, enhancement in the mRNA transcripts and, henceforth, protein expression of TGF-β3 was observed. However, these were found to be downregulated in case of liver fibrosis (P < 0.05). This NAFLD rat model shows the histopathologic changes of human NAFLD and is suitable for the study of NAFLD pathogenesis. These findings suggest that type I collagen and the liver fibrosis-related factors TGF- β1, TGF- β3, and α-SMA may be significant contributors to NAFLD. Although NAFLD model is previously demonstrated by other researchers, our study is novel in terms of exploration of involvement of fibrosis-related factors and in particular aforementioned proteins at the early stage of NAFLD vis-à-vis dynamics of type-I collagen distribution.
Read full abstract