Visualizing the localization and distribution of lipids within arteries is crucial for studying atherosclerosis. However, existing lipid-specific probes face challenges such as strong hydrophobicity and nonspecific staining of lipophilic organelles or tissues, making them impractical for the precise identification of atherosclerotic plaques. To address this issue, we design a synergistically activated probe, Cbz-Lys-Lys-TPEB, which responds to cathepsin B (CTB) and H2O2 for the in situ generation of aggregation-induced emission luminogens (AIEgens). This enables specific staining of lipids within arteries and precise imaging of atherosclerotic plaques. The probe combines a tetraphenylethene building block with a hydrophilic peptide sequence (Cbz-Lys-Lys) and phenylboric acid module, providing excellent water solubility and fluorescence quenching in a molecular dispersion state. Upon interaction with H2O2 and CTB within plaques, the hydrophilic Cbz-Lys-Lys-TPEB probe is specifically cleaved and converted into hydrophobic AIEgens, leading to rapid aggregation and significant fluorescence enhancement. Interestingly, the in situ-liberated AIEgens display distinct lipid binding ability, effectively tracking the location and distribution of lipids in plaques. This synergistic target-activated AIEgen liberation strategy demonstrates significant feasibility for the reliable and accurate identification of atherosclerotic plaques, holding tremendous potential for clinical diagnosis and risk stratification of atherosclerosis.