Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation surface treatment was developed to improve the adhesive bonding strength for polyamide-based carbon fiber-reinforced polymer. The type of ultraviolet wavelength, irradiation distance and irradiation time were optimized. Surface treatment with simultaneous UV irradiation of 185 nm and 254 nm wavelength generated unbound N-H stretching that was capable of chemical bonding with epoxy adhesives through a photo-scission reaction of the amide bond of polyamide matrix. Therefore, ultraviolet irradiation treatment improved the wettability and functional groups of the polyamide-based carbon fiber-reinforced polymers for adhesive bonding. As a result, the adhesive strength of the polyamide-based carbon fiber-reinforced polymers was increased by more than 230%.