Croconic acid crystals show proton displacive-type ferroelectricity with a large spontaneous polarization reaching 20 μC/cm^{2}, which originates from the strong coupling of proton and π-electron degrees of freedom. Such a coupling makes us expect a large polarization change by photoirradiations. Optical-pump second-harmonic-generation-probe experiments reveal that a photoexcited croconic-acid crystal loses the ferroelectricity substantially with a maximum quantum efficiency of more than 30 molecules per one absorbed photon. Based on density functional calculations, we theoretically discuss possible pathways toward the formation of a one-dimensional domain with polarization inversion and its recovery process to the ground state by referring to the dynamics of experimentally obtained polarization changes.
Read full abstract