The development of an efficient, convenient, and cost-effective droplet-driven reactor to observe the reaction microphenomenon is crucial for investigating the chemical reaction and synthesis mechanisms. Herein, an efficient and economical strategy by combining micro-extrusion compression molding (μ-ECM) and surface modification was proposed to fabricate a superhydrophobic magnetic-driven reactor (SMDR) for microliter droplet reaction interface visualization. The wall-like array microstructures with favorable geometric uniformity and the nano-SiO2 coating with uniform dispersion endow the SMDR with robust superhydrophobicity, featuring a contact angle of 159.5 ± 1.0° and a rolling angle of 5.1 ± 0.5°. Due to the uniform dispersion of Fe3O4 in thermoplastic elastomer (TPE), the SMDR possesses sensitive magnetic responsiveness, which can drive droplets to move rapidly, continuously, and losslessly on horizontal and inclined planes, even on a plane with an inclination angle of up to 15°. Interestingly, the SMDR was successfully used to visualize the interface formation and evolution of three simple mixing/reaction processes, which provides a convenient, efficient, and low-cost method for the study of the droplet mixing reaction process and interface visualization.
Read full abstract