Fungal genetic systems ideally combine molecular tools for genome manipulation and a sexual reproduction system to create an informative assortment of combinations of genomic modifications. When employing the sexual cycle to generate multi-mutants, the background genotype variations in the parents may result in progeny phenotypic variation obscuring the effects of combined mutations. Here, to mitigate this variation in Fusarium verticillioides, we generated a MAT1-2 strain that was near isogenic to the sequenced wild-type MAT1-1 strain, FGSC7600. This was accomplished by crossing FGSC7600 with the divergent wild-type MAT1-2 strain FGSC7603 followed by six sequential backcrosses (e.g., six generations) of MAT1-2 progeny to FGSC7600. We sequenced each generation and mapped recombination events. The parental cross involved twenty-six crossovers on nine of the eleven chromosomes. The dispensable chromosome 12, found in FGSC7603 but lacking in FGSC7600, was not present in the progeny post generation five. Inheritance of complete chromosomes without crossover was frequently observed. A deletion of approximately 140 kilobases, containing 54 predicted genes on chromosome 4, occurred in generation 4 and was retained in generation 5 indicating that these genes are dispensable for growth and both asexual and sexual reproduction. The final MAT1-2 strain TMRU10/35 is about 93% identical to FGSC7600. TMRU10/35 is available from the Fungal Genetics Stock Center as FGSC27326 and from the ARS Culture Collection as NRRL64809.