With the rapid development of Internet of Things technology, the Internet of Vehicles has emerged as a significant application. The Internet of Vehicles connects vehicles with traffic infrastructure and other vehicles, enabling real-time information sharing and vehicle dispatching. However, in the Internet of Vehicles environment, traffic scheduling systems face challenges such as sparse raw data and environmental confounding bias, which limit the effectiveness of traditional graph-based reinforcement learning methods. In this paper, we propose a Cross-City Federated Continual Learning Framework for Spatiotemporal Graph Transfer Learning called CCFTL, which removes confounding effects on reinforcement learning and enhances few-shot transfer learning in data-scarce cities. Our approach aims to significantly improve the adaptability and scalability of cross-city vehicle networking technologies in ever-changing environments. This study acts as an innovative research of the deconfounding strategy with spatiotemporal graph meta-knowledge learning, which enables optimization of cross-city meta-knowledge transfer through a federated continual learning approach. This approach effectively reduces learning bias caused by regional differences, which enhances the model’s generalization and adaptability to complex, heterogeneous urban scenarios. Experimental results show that our framework significantly outperforms traditional methods, especially in improving the efficiency and accuracy of traffic dispatch systems in Internet of Vehicles environments with scarce data and the presence of confounding factors.
Read full abstract