BackgroundDrones are able to deliver automated external defibrillators in cases of out-of-hospital cardiac arrest (OHCA) but can be deployed for other purposes. Our aim was to evaluate the feasibility of sending live photos to dispatch centres before arrival of other units during time-critical incidents. MethodsIn this retrospective observational study, the regional dispatch centre implemented a new service using five existing AED-drone systems covering an estimated 200000 inhabitants in Sweden. Drones were deployed automatically over a 4-month study period (December 2022–April 2023) in emergency calls involving suspected OHCAs, traffic accidents and fires in buildings. Upon arrival at the scene, an overhead photo was taken and transmitted to the dispatch centre. Feasibility of providing photos in real time, and time delays intervals were examined. ResultsOverall, drones were deployed in 59/440 (13%) of all emergency calls: 26/59 (44%) of suspected OHCAs, 20/59 (34%) of traffic accidents, and 13/59 (22%) of fires in buildings.The main reasons for non-deployment were closed airspace and unfavourable weather conditions (68%). Drones arrived safely at the exact location in 58/59 cases (98%). Their overall median response time was 3:49 min, (IQR 3:18–4:26) vs. emergency medical services (EMS), 05:51 (IQR: 04:29–08:04) p-value for time difference between drone and EMS = 0,05. Drones arrived first on scene in 47/52 cases (90%) and the largest median time difference was found in suspected OHCAs 4:10 min, (IQR: 02:57–05:28). The time difference in the 5/52 (10%) cases when EMS arrived first the time difference was 5:18 min (IQR 2:19–7:38), p = NA. Photos were transmitted correctly in all 59 alerts. No adverse events occurred. ConclusionIn a newly implemented drone dispatch service, drones were dispatched to 13% of relevant EMS calls. When drones were dispatched, they arrived at scene earlier than EMS services in 90% of cases. Drones were able to relay photos to the dispatch centre in all cases.Although severely affected by closed airspace and weather conditions, this novel method may facilitate additional decision-making information during time-critical incidents.
Read full abstract