Organophosphorus flame retardants (OPFRs) have emerged as good alternatives to brominated flame retardants, the use of which is globally restricted. In this study, a screening method based on QuEChERS-gas chromatography-quadrupole time-of-flight mass spectrometry (GC-Q-TOF/MS) was established for the determination of 21 OPFRs in rice. First, full scan (scanning range, m/z 50-450) was performed with a mixed standard solution of the 21 OPFRs (0.1 μg/g) by GC-Q-TOF/MS. The fragmentation pathways of these OPFRs were then investigated to explore their cleavage fragments, the interrelationships among fragments, and the possible cleavage modes of alkylated, chlorinated, and aromatic OPFRs. The retention times, isotopic abundance ratios, and molecular formulas of the characteristic fragments as well as the exact mass of the compounds were obtained to establish a mass spectral library of the OPFRs. Rice samples were extracted and purified by the QuEChERS method, and 0.5% formate acetonitrile solution was used as the extraction solvent; 4 g of magnesium sulfate, 1 g of sodium chloride, 0.5 g of disodium hydrogen citrate, and 1 g of sodium citrate as the extraction-salt combination; and 50 mg of primary secondary amine (PSA), 50 mg of octadecylsilane (C18), and 150 mg of magnesium sulfate as the purification materials. The chromatographic separation of the 21 OPFRs was completed within 16 min under optimized temperature program conditions on the DB-5MS UI column. The screening parameters were optimized, and a full scan of the samples was performed under the following conditions: number of characteristic fragment ions ≥2; accurate mass window=±2×10-5 (±20 ppm); retention time deviation=±0.2 min, and ion abundance deviation<20%. The developed method was applied to the screening 21 OPFRs in the samples. The results indicated that the matrix interference was greatly reduced by decreasing the extraction accurate mass window, thereby improving the signal-to-noise ratio of the analytes. The targets were extracted from the matrix interference and background noise using deconvolution software, which improved the match between the target compounds and the mass spectral library. The detection rates of alkyl and aromatic OPFRs increased by 22% and 25%, respectively, when the spiking level was increased from 2 to 10 ng/g. Among the chlorinated OPFRs, only tris(2-chloroisopropyl) phosphate (TCIPP) was not detected at a spiking level of 2 ng/g, indicating that chlorinated OPFRs could be identified even at low concentrations. The characteristic ions of the detected compounds matched those of the home-made mass spectral library well, indicating that the practical application of the home-made mass spectral library. The established screening method was applied in the determination of OPFRs in rice samples from different regions in China. A total of 11 OPFRs were detected, among which trimethyl phosphate (TMP), tri-iso-butyl phosphate (TiBP), and tris(3,5-dimethylphenyl) phosphate (T35DMPP) had the highest detection rates. These results indicate that these three OPFRs are widely used and can easily come into contact with rice samples through various routes. Differences in the types of OPFRs detected in the actual samples may be related to the types of OPFRs produced in local factories. OPFRs can be detected in rice samples by the developed GC-Q-TOF/MS screening method, which is helpful for the identification of OPFRs in complex matrix samples.