Tolerance and persistence occur "silently" in bacteria categorized as susceptible by antimicrobial susceptibility testing in clinical microbiology laboratories. They are different from resistance phenomena, not well-studied, and often remain unnoticeable. We aimed to investigate and characterize ceftazidime-avibactam (CZA) tolerance/persistence in 80 Klebsiella pneumoniae isolates from bloodstream infections. We used the Tolerance Disk Test (TDtest) to detect CZA tolerance/persistence and investigate the avibactam (AVI) influence on them, and time-kill assays with minimal duration for killing (MDK) determination to characterize/differentiate CZA tolerance from persistence, for selected isolates. Whole genome sequencing was performed for 49/80 selected isolates to investigate genes related to beta-lactam tolerance/persistence and resistance as well as phylogeny studies. Tolerance/persistence to CZA was detected in 48/80 (60%) isolates, all extensively drug-resistant (XDR) or multidrug-resistant, carbapenem-resistant K. pneumoniae (CRKp), KPC producers, and previously categorized as susceptible (not resistant) to CZA. No heteroresistance was detected. CZA tolerance/persistence occurred due to ceftazidime tolerance/persistence and was not related to AVI in the CZA combination. 5/11 isolates were characterized as CZA-tolerant and 5/11 as CZA-persistent. The single (1/11) XDR and CRKp non-KPC producer was truly susceptible. All the CZA-tolerant/persistent isolates (ST11, ST258, ST340, ST437, ST16, ST17, and ST307) harbored the carbapenemase-encoding gene blaKPC-2. Mutation in only two genes (rpoS and degQ) related to beta-lactam tolerance/persistence was found in only 7/49 CZA-tolerant/persistent isolates, suggesting the presence of yet unknown beta-lactam tolerance/persistence genes. Among the K. pneumoniae bloodstream isolates studied, 60%, previously categorized as susceptible to CZA, were, actually, tolerant/persistent to this antibiotic, all these KPC producers.
Read full abstract