Topping reduces the growing point at the top of cotton plants. This process enables the plant to allocate more energy and nutrients to fruit growth, thereby enhancing both the quantity and quality of the fruit. Current cotton-topping machinery often leads to over-topping, which can affect crop yield and quality. Manual topping is effective in controlling over-topping due to its adherence to agronomic requirements, but it is labor-intensive. This study integrated principles from biology (bionics) to design a manipulator that mimics the action of hand pinching during manual topping. Screening grids of different sizes were designed based on a statistical analysis of the biological parameters of cotton tops to optimize the topping process. A disc cam mechanism was developed to enable the automatic opening and closing of the manipulator. From the results, it was evident that the spring tension must exceed 81.5 N to properly cut the cotton stem near the top. The spacing of the screening grid (40 mm) and the position of the topping manipulator (less than 50 mm) were optimized based on experimental results. Performance testing showed promising results with a 100% topping rate. This study not only identified the challenges with current cotton-topping methods but also proposed a bionics-inspired solution; a bionic manipulator equipped with a screening grid was proposed to achieve high accuracy in cotton topping, which significantly reduced over-topping rates to 6.67%. These findings are crucial for advancing agricultural technology and improving efficiency in cotton cultivation.