The Jinding deposit is well-known to contain high concentrations of metals Zn, Pb, Cd, Tl, Ag, etc. in the world. The associated critical metals and their substitution mechanisms were wildly concerned. This study investigated and compared sphalerites using a combination of textural, trace element, and sulfur isotopic analyses to give insights into element substitution mechanisms and possible sources of ore-forming fluids and to constrain processes involved in ore genesis of the world-class Jinding sediment-hosted Zn-Pb deposit. LA-ICP-MS analyses reveal chemical zoning in the sphalerites together with the coupling of two main groups of trace elements substitution mechanisms: one is Fe + Ge + Mn + Pb + As + Tl and vacancies to substitute Zn, and the other is Cd + Cu + Ag + Sb to substitute Zn. The incorporation of trace elements is facilitated by the replacement of Zn by Cd and Fe. These two group elements have distinct color oscillatory zonation and are intertwined in the trace element LA-ICP-MS element maps. The sulfur isotopic values show high isotope fractionation in the sphalerite from −28.4 to −0.5 ‰, suggesting a bacteriogenic sulfur origin at Jinding. Sphalerite sample has observed that sulfur isotope is correlated with Fe concentration and anti-correlated with Cd concentration. These variations in isotope fractionation and trace element disequilibrium partitioning were interpreted as the effects of temperature and pH with less influence from sulfur activity. These variability zones of sphalerite alternately enriched in Cd- and Fe-related elements suggested that ore fluids may flow from metal-fertile sedimentary/basement sequences during their ascent, and colloform sphalerite was likely formed by a high degree of supercooling, over-saturation, and rapid mixing between bacteriogenic sulfur and metal-rich in spaces of collapse dome. Based on our observations, we suggested that these variability zones of layered sphalerite alternately enriched in Cd and Fe would likely provide useful insight for a potential economic Zn-Pb and associated critical metals mineral exploration deposit.
Read full abstract