An hp-finite element discretization for the α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-Mosolov problem, a scalar variant of the Bingham flow problem but with the α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-Laplacian operator, is being analyzed. Its weak formulation is either a variational inequality of second kind or equivalently a non-smooth but convex minimization problem. For any α∈(1,∞)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha \\in (1,\\infty )$$\\end{document} we prove convergence, including guaranteed convergence rates in the mesh size h and polynomial degree p of the FE-solution of the corresponding discrete variational inequality. Moreover, we derive two families of reliable a posteriori error estimators which are applicable to any “approximation” of the exact solution and not only to the FE-solution and can therefore be coupled with an iterative solver. We prove that any quasi-minimizer of those families of a posteriori error estimators satisfies an efficiency estimate. All our results contain known results for the Mosolov problem by setting α=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha =2$$\\end{document}. Numerical results underline our theoretical findings.