The theory of linear recurrence sequences is applied to obtain an explicit formula for the ultimate ruin probability in a discrete-time risk process. It is assumed that the claims distribution is arbitrary but has finite support {0,1,…,m+1}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varvec{\\{0,1,\\ldots ,m+1\\}}$$\\end{document}, for some integer m≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varvec{m\\ge 1}$$\\end{document}. The method requires finding the zeroes of an m degree polynomial and solving a system of m linear equations. An approximation is derived and some numerical results and plots are provided as examples.
Read full abstract