This paper presents a discrete-time output feedback controller to regulate the output voltage of a DC-DC buck converter. The proposal’s main feature is the application of a discrete-time equivalent of the robust exact filtering differentiator. First, the document exposes a theoretical analysis of the closed-loop system, where it is considered the problem of implementing a real-time differentiator with a good relationship between exactness and noise filtration performance. Hence, secondly, the controller in a laboratory setup is presented. The first experimental results suggest that the proposed controller exhibits good robustness against noise and maintains the asymptotic accuracy, even with saturated control inputs, as in the case of the DC-DC buck converter. Consequently, aiming to verify the features of the proposed method, the controller is validated through multiple experiments, showing satisfactory voltage tracking accuracy, good suppression of instantaneous load and supply voltage disturbances, and robustness against bounded measurement noise.
Read full abstract