The aim of this article is a critical analysis of the logocentric representation of brain as a conceptual basis for artificial neural networks (ANNs). Neuro-logocentrism turns possible mostly because of some similarities of brain activity to logical reasoning. They are discrete mode of action, semblance of realization of logical connectives and inferences, presence of two “values” (“all-or-none” principle). It is demonstrated that they are only loose analogies. The idea that neurons are net nodes that realize logical and computational operations as quite simple automata is based on the concept of connectionism that appears a new special type of hylemorphism. On the contrary, brain activity demonstrates the primacy of the whole and its irreducibility to the aggregative sum of elements and parts. It appears continual totality, where everything is reciprocally interconnected, so that it is impossible to establish any unified formalism for it. Brain essentially is a part of the living, not “bio-logic” but fully biological reality, which has an emergent mode of existence with its unique properties. Such processes as neuroplasticity and synaptic pruning are responsible for adaptive and teleonomic re‑shaping of the brain. Usual conventional logic is suitable for computing machines and their nets, but it is incapable of reproducing such autopoietic phenomena. As a result, there is a fatal ontological gap between natural networks of neurons and ANNs. The second ones are not able to implement complex cognitive functions as they are product of the logocentric hypertrophy of algorithms which is fully devoid of flexibility of the living brain.