The properties of cellulose nanocrystals with allomorph II (CNC-II) vary with the sources and the treatments received. In this work, the influences of hydrolysis time, temperature, and the applied acid concentration on the crystal size of CNC-II were investigated by the surface response experimental design. The results showed that temperature was the most significant factor affecting the crystal size of CNC-II during hydrolysis from mercerized cellulose. Then the morphology and colloidal properties of CNC-II were revealed by dynamic laser scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), etc. XRD results indicated that CNC-II had slightly lower crystallinity (80.89 % vs 82.7 %) and larger crystallite size (5.21 vs. 5.13 nm) than CNC-I. TEM and AFM results showed that the morphology of CNC-II were disc-like and rod-like particles, with an average diameter of 14.6 ± 4.7 nm (TEM) and a thickness of 4– 8 nm (AFM). TG and XPS revealed the reduced thermal stability was due to the introduced sulfate groups in CNC-II during hydrolysis. This investigation has addressed the features of CNC-II derived from mercerized cellulose, and it would be promising in fabricating advanced materials.
Read full abstract