Most luminophores often suffer from the problem of aggregation-caused quenching (ACQ) or fluorescence disappearance in dilute solution. It is significant to bridge the gap between ACQ and AIE. In this work, a facile but effective strategy was proposed for the fabrication of always-on luminophores based on the excited state intramolecular proton transfer (ESIPT) mechanism, and six luminophores emitting bright fluorescence in solution, aggregation and solid states were synthesized from 5-tert-butyl-2-hydroxyisophthalaldehyde. All these ESIPT systems show only keto emission owing to their congested structures which block the breakage of intramolecular hydrogen bond (O–H⋯N) by solvation, and subsequently make enol emission impossible. Three of these luminophores are prone to convert into the corresponding phenolate anions emitting blue-shifted emission, which enable them to sense pH variation in the weakly basic range. Furthermore, white-light emission was achieved by combining two of them which show complementary-color fluorescence, and one of them was utilized for bioimaging of living Hela cells and the high-resolution image was obtained.