This paper reports the effects of fiber breakage defects and waviness defects on the compressive fatigue behavior and the progressive damage evolution process of 3D Multiaxial Braided Composites (3DMBCs). Combined with finite element compression simulation and ultra-depth microscope, the internal defect content of composites with different braiding angles was determined. The results demonstrate that the weakening effect of waviness and fiber breakage defects is greater than the strengthening effect of the braiding angle. This causes the fatigue resistance of 3DMBCs with the 31° braiding angle being better in both directions of 0° and 90°. The increase of 4° waviness and 10% fiber breakage defect results in the average fatigue life of composites being shortened by 48% and the energy consumption rate increased by 10% at 85% stress level in the 90° compression direction. The alteration in loading direction modifies the included angle corresponding to the stress component. The stress component parallel to the fiber direction under compressive fatigue load leads to interfacial debonding in the composites, whereas the stress component perpendicular to the fiber direction results in pronounced shear failure.
Read full abstract