Direct Z-scheme photocatalyst possess promising potential to utilize solar radiation for photocatalytic overall water splitting; however, the design and characterization remain challenging. Here, we construct and verify a direct Z-scheme heterojunction using edge-modified phosphorene-nanoribbons (X-PNRs, where X = OH and OCN) with first-principles ground-state and excited-state density functional theory (DFT) calculations. The ground-state calculations provide fundamental properties such as geometric structure and band alignment. The linear-response time-dependent DFT (LR-TDDFT) calculations exhibit the photogenerated charge distribution and demonstrate the generation of interlayer excitons in heterojunctions, which are advantageous to the electron-hole recombination in Z-scheme heterojunctions. The ultrafast charge transfer at the interface studied by time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations indicates that interlayer electron-hole recombination is prior to intralayer recombination for the OH/OCN-PNRs heterojunction, showing the characteristics of a Z-scheme heterojunction. Therefore, our computational work provides a universal strategy to design direct Z-scheme heterojunction photocatalysts for overall water splitting.
Read full abstract