We propose a simple and cost-effective method, using a direct frequency modulation (FM) and noncoherent detection (NCD) scheme, to suppress the nonlinear optical effects in dense wavelength division multiplexed (DWDM) optical communication. The FM transmitter comprises a directly modulated distributed feedback laser and a saturable semiconductor optical amplifier. In the NCD receiver, an optical slope filter as the FM to intensity modulation (IM) signal convertor is placed before a conventional photodetector. Because the FM signal has more evenly distributed optical power, bit-pattern-dependent nonlinear effects are consequently suppressed. After analyzing the nonlinear effects in the FM-NCD system and traditional IM direct detection (IM-DD) system, we found that the minimum achievable BER of the proposed FM-NCD scheme is 40 dB smaller. Moreover, a 2 Tbps (10 Gb/s × 200 channels) capacity was achieved by the FM-NCD system in 100 km DWDM passive optical networks (PONs), which is twice the capacity of the IM-DD system (10 Gb/s × 100 channels) under the same condition. These results indicate that WDM-PONs with the cost-effective FM-NCD scheme are strong candidates for future broad access networks and show great potential for the combination of optical access and metro networks for future generations of PONs.
Read full abstract