One of the biggest players in the world economy is the naval industry, which mainly controls the merchandise transportation sector. Any issue with ships could represent millions of USD of loss and increases in the cost of goods for the population worldwide. Two main problems which this industry has fought are corrosion and biofouling. Lastly, the pollution of the sea has gained importance, and more strict policies have been applied regarding the use of certain products by this industry. One of these is paintings, which represented this industry's definitive solution to avoid the mentioned problems for a long time. This situation allowed to explore other solutions like PVD coatings through multifunctional coatings. Zirconium nitride has been demonstrated to be useful in resisting corrosion with reliable mechanical properties. However, this material does not possess antimicrobial action. The present study presents a nanostructured coating combining ZrN with Cu, which works as a biocide, contributing to the desired multifunctionality. The developed coating was obtained using a hybrid magnetron co-sputtering employing High-power impulse (HiPIMS) and direct current (DCMS) power sources under a reactive atmosphere. SEM, EDX, XRD and Raman spectroscopy were used to assess the physico-chemical properties of the coatings. Besides, depth-sensing nano-indentation explored the mechanical properties. The tribological performance was tested by a reciprocating tribometer under dry and wet (with 3.5 % w/w NaCl solution) contact conditions and employing a soda lime glass ball as a counterbody. The results showed that adding Cu to ZrN through this technology resulted in a limited hardness reduction from 19 (pure ZrN) to 14 GPa. Also, the chemical activation with NaOCl solution softens the obtained coating and, together with the saline solution, influences the wear resistance. However, the nanostructured coating has been demonstrated to be suitable for use under real conditions, without loss of its protection over the used substrate. It opens a new possibility of a solution for the naval industry.
Read full abstract