Microplastics are widely present in global ecosystems, threatening both marine and freshwater species. Given this problem, it is vital to research where land-based microplastics originate and how they are transmitted to receiving waters in urban agglomerations. Research results should inform systemic mitigation efforts to prevent future contamination. This study established the multi-directional transmission network of a microplastic mass balance system using a source-pathway-receptor framework, and involving annual source stocks and pathway flows with considerable variations under dry and wet weather patterns. Details of a baseline scenario quantifying the occurrence and spread of microplastics in an urban agglomeration were also determined in the context of current environmental management practices. We demonstrated that the total stock of the six major pollution sources amounted to 5317.7 ± 2175.3 and 3320.1 ± 953.6 tons/a in dry and wet weather, respectively; and 2347.8 ± 766.9 and 1991.8 ± 701.8 tons/a flows directly entered the sewer system and receiving water in Shanghai, China, respectively. Prominent microplastic stocks were found in atmospheric fallout, industrial wastewater, and domestic sewage. These stocks were much higher compared to crop farming wastewater, aquacultural wastewater, and livestock and poultry breeding wastewater. Total microplastic flows entering receiving water reached 3207.4 ± 1071.6 tons/a; the largest contributions were from wet weather overflow (23.7%), direct atmospheric fallout (21.7%), wastewater treatment plant effluent (14.2%), industrial wastewater (14.1%), and surface runoff (10.4%). Weather patterns led to divergent microplastic transmission pathways and mass flows, revealing a lagging timeline mode and illustrating the basic spatiotemporal features of microplastic contamination in urban agglomerations. Terminal disposal practices retained about two-fifths of the microplastic flows that would have otherwise been transmitted into receiving water. Of these, land surface sweep contributed half of the retained flow. Improvements in WWTP removal efficiency, storm sewage interception rate, industrial wastewater collection rate, and sewer sediment dredge rate could further enhance the systemic benefits.
Read full abstract