We study diquarks on the lattice in the background of a static quark, in a gauge-invariant formalism with quark masses down to almost physical mπ. We determine mass differences between diquark channels as well as diquark-quark mass differences. The lightest and next-to-lightest diquarks have “good” scalar, {overline{3}}_F , {overline{3}}_c , JP = 0+, and “bad” axial vector, 6F, {overline{3}}_c , JP = 1+, quantum numbers, and a bad-good mass difference for ud flavors, 198(4) MeV, in excellent agreement with phenomenological determinations. Quark-quark attraction is found only in the “good” diquark channel. We extract a corresponding diquark size of ∼ 0.6 fm and perform a first exploration of the “good” diquark shape, which is shown to be spherical. Our results provide quantitative support for modeling the low-lying baryon spectrum using good light diquark effective degrees of freedom.