AbstractEarly diagnosis of neonatal respiratory distress syndrome (nRDS) is important in reducing the mortality of preterm babies. Knowledge of the ratio of two components of lung surfactant, dipalmitoylphosphatidylcholine (DPPC), and sphingomyelin (SM) can be used as biomarkers of lung maturity and inform treatment. Raman spectroscopy is a powerful tool to analyze vibrational spectra of organic molecules which requires only limited sample preparation steps and, unlike IR spectroscopy, is not masked by water absorption. In this paper, we explore the potential of using Raman spectroscopy as a tool to estimate the ratio of DPPC and SM from aqueous vesicles of binary mixture of DPPC and SM. We demonstrate that the ratio of DPPC and SM can be estimated by estimating the ratio of intensity of CO stretch of DPPC and CC stretch of SM as well as CO stretch of DPPC and amide I of SM. Further, we employ a partial least squares regression (PLSR) model to automate the estimation and demonstrate that PLSR method can predict the DPPC and SM ratio with an R2 value of 0.968.
Read full abstract