N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct that forms during chloramine disinfection of municipal wastewater effluents which are increasingly used to augment drinking water supplies due to growing water scarcity. Knowledge of wastewater NDMA precursors is limited and the known pool of NDMA precursors has not closed the mass balance between precursor loading, precursor NDMA yield, and formed NDMA. Benzalkonium chlorides (BACs) are the most prevalent quaternary ammonium surfactants and have antimicrobial properties. The extensive utilization of BACs in household, commercial and industrial products has resulted in their detection in wastewater at elevated concentrations. We report the formation of a potent NDMA precursor, benzyldimethylamine (BDMA) from the biodegradation of BACs during activated sludge treatment. BDMA formation and NDMA formation potential (FP) were functions of BAC and mixed liquor suspended solids concentration at circumneutral pH, and the microbial community source. Sustained exposure to microorganisms reduced NDMA FP through successive dealkylation of BDMA to less potent precursors. BAC alkyl chain length (C8 – C16) had little impact on NDMA FP and BDMA formation because chain cleavage occurred at the C–N bond. Wastewater effluents collected from three facilities contained BDMA from 15 to 106 ng/L, accounting for an estimated 4 to 38 % of the NDMA precursor pool.
Read full abstract