Background and Objectives: Wound healing is a complex process involving cellular, anatomical, and functional repair, often hindered in chronic wounds associated with diseases like diabetes and vascular disorders. This study investigated the efficacy of conventional and regenerative wound healing approaches in a sheep surgical wound model. Materials and Methods: Six female Bergamasca sheep underwent five full-thickness skin lesions treated with various methods: sterile gauze (control), chlorhexidine, sodium hypochlorite, micronized dermis system application, and dermal matrix. Wound healing progression was monitored over 42 days through wound dimension measurements, exudate analysis, and histopathological evaluations. Results: The results indicated that all wounds healed completely by day 42, with significant reductions in wound size and exudate over time. Notably, Micronized dermis system application and dermal matrix treatments showed a faster evolution in exudate characteristics and improved collagen reorganization compared to other treatments. Histological analysis revealed earlier neovascularization and better reconstitution of hair follicles in these groups. Despite the lack of significant differences in healing time, both regenerative approaches enhanced wound healing phases, contributing to exudate control, angiogenesis promotion, and reduced scar formation. Conclusions: The findings suggest that while micronized dermis system application and dermal matrix do not accelerate acute wound healing compared to conventional methods, they offer potential benefits in managing exudate and improving tissue regeneration, warranting further investigation in chronic wound scenarios.
Read full abstract