AbstractWe construct a non-commutative analogue of the algebra of differential forms on the space of endomorphisms of a vector space, given a non-commutative algebra of functions and differential forms on the vector space. The construction yields a differential bialgebra which is a skew product of an algebra of functions and an algebra of differential forms with constant coefficients. We give necessary and sufficient conditions for such an algebra to exist, show that it is uniquely determined by the differential algebra on the vector space, and show that it is a non-commutative superpolynomial algebra in the matrix elements and their differentials (i.e. that it has the same dimensions of homogeneous components as in the classical case).