The topic related to the coexistence of different synchronization types between fractional-order chaotic systems is almost unexplored in the literature. Referring to commensurate and incommensurate fractional systems, this paper presents a new approach to rigorously study the coexistence of some synchronization types between nonidentical systems characterized by different dimensions and different orders. In particular, the paper shows that identical synchronization (IS), antiphase synchronization (AS), and inverse full state hybrid projective synchronization (IFSHPS) coexist when synchronizing a three-dimensional master system with a fourth-dimensional slave system. The approach, which can be applied to a wide class of chaotic/hyperchaotic fractional-order systems in the master-slave configuration, is based on two new theorems involving the fractional Lyapunov method and stability theory of linear fractional systems. Two examples are provided to highlight the capability of the conceived method. In particular, referring to commensurate systems, the coexistence of IS, AS, and IFSHPS is successfully achieved between the chaotic three-dimensional Rössler system of order 2.7 and the hyperchaotic four-dimensional Chen system of order 3.84. Finally, referring to incommensurate systems, the coexistence of IS, AS, and IFSHPS is successfully achieved between the chaotic three-dimensional Lü system of order 2.955 and the hyperchaotic four-dimensional Lorenz system of order 3.86.