Transition metal dichalcogenides (TMDs) are fascinating and prodigious considerations in the electrochemical energy storage sector because of their two dimensional chemistry as well as heterogeneous characteristics. Herein, we synthesized interconnected WS2 nanosheets by a hydrothermal method followed by sulphuration at 850 °C in an argon atmosphere. The ultrathin WS2 nanosheet array is endowed with an excellent specific capacitance of 74 F g-1 at the current density of 3 A g-1 up 7000 cycles. Moreover, a symmetric supercapacitor was fabricated using WS2 nanosheets, which provided the admirable high specific capacity of 6.3 F g-1 at 0.05 A g-1 with the energy and power density of 5.6 × 102 mW h kg-1 and 3.6 × 10 5 mW kg-1, respectively. Density functional theory (DFT) simulations revealed the presence of populated energy states near the Fermi level resulting in a high quantum capacitance value, which supports the experimentally achieved high capacitance value. The attained results recommend interconnected WS2 nanosheets as a novel, robust, and low-cost electrode material for supercapacitor energy storage devices.
Read full abstract