Using spectral edge frequency (SEF95) and dimension of activation (DA), a new tool derived from the dimension of correlation, we assessed the activation of thalamus and cortex in the different vigilance states. Results were gathered from intracerebral recordings performed in 12 drug-resistant epileptic patients during video-stereoelectroencephalographic (SEEG) monitoring. In the cortex, we observed a progressive decrease of DA from wake to sleep, with minimal DA values characterizing the deep slow wave sleep (dSWS) stage. During paradoxical sleep (PS), cortical level of activity returned to DA values similar to those obtained during wakefulness. In the thalamus, DA values during wakefulness were higher than the values observed during light SWS (ISWS), deep SWS (dSWS) and PS; there were no significant differences between the 3 sleep stages. Similar variations were observed with SEF95. DA analysis proved reliable for quantification of cortical activity, in agreement with data issued from classical vigilance states scoring and spectral analysis. At the thalamic level, only 2 levels of activity within a sleep wake cycle were observed, pointing to dissociated levels of activation between the thalamus and the neocortex during ISWS and PS.