The solution chemistry of the hydrolytic, early-transition-metal ions Ti4+ and Sc3+ represents a coordination chemistry challenge with important real-world implications, specifically in the context of 44Ti/44Sc and 45Ti/NatSc radiochemical separations. Unclear speciation of the solid and solution phases and tertiary mixtures of mineral acid, organic chelators, and solid supports are common confounds, necessitating tedious screening of multiple variables. Herein we describe how thermodynamic speciation data in solution informs the design of new solid-phase chelation approaches enabling separations of Ti4+ and Sc3+. The ligands catechol (benzene-1,2-diol) and deferiprone [3-hydroxy-1,2-dimethyl-4(1H)-pyridone] bind Ti4+ at significantly more acidic conditions (2-4 pH units) than Sc3+. Four chelating resins were synthesized using either catechol or deferiprone with two different solid supports. Of these, deferiprone appended to carboxylic acid polymer-functionalized silica (CA-Def) resin exhibited excellent binding affinity for Ti4+ across a wide range of HCl concentrations (1.0-0.001 M), whereas Sc3+ was only retained in dilute acidic conditions (0.01-0.001 M HCl). CA-Def resin produced separation factors of >100 (Ti/Sc) in 0.1-0.4 M HCl, and the corresponding Kd values (>1000) show strong retention of Ti4+. A model 44Ti/44Sc generator was produced, showing 65 ± 3% yield of 44Sc in 200 μL of 0.2 M HCl with a significant 44Ti breakthrough of 0.1%, precluding use in its current form. Attempts, however, removed natSc in loading fractions and a dilute (0.4 M HCl) wash and recovered 80% of the loaded 45Ti activity in 400 μL of 6 M HCl. The previously validated 45Ti chelator TREN-CAM was used for comparative proof-of-concept reactions with the CA-Def eluent (in HCl) and literature-reported hydroxamate-based resin eluents (in citric acid). CA-Def shows improved radiolabeling efficiency with an apparent molar activity (AMA) of 0.177 mCi nmol-1, exceeding the established methods (0.026 mCi nmol-1) and improving the separation and recovery of 45Ti for positron emission tomography imaging applications.
Read full abstract