Although square-planar Pt(II) complexes are well-known to self-assemble into supramolecules via noncovalent intermolecular Pt···Pt and/or π-π interactions, the self-assembly of dicationic Pt(II) complexes was scarce due to the electrostatic repulsive force. Herein, a series of dicationic diimine bis(N-heterocyclic allenylidene) Pt(II) complexes were synthesized and characterized. Close Pt···Pt and/or π-π contacts are observed in the crystals of these complexes. In particular, complexes 1·2PF6 and 2·2PF6 exhibit one-dimensional packing with extended Pt···Pt contacts of 3.302 and 3.240 Å, respectively. The photophysical properties of these complexes in the solution and solid state were investigated. NIR emission was recorded for complexes 1·2PF6 (λmax = 950 nm) and 2·2PF6 (λmax = 855 nm) in the solid state at 298 K. To explore the aggregate behaviors of these complexes, the counteranion PF6- was exchanged to the large lipophilic anion 2,3,4-tris(dodecyloxy)benzene sulfonate (LA-) and the hydrophilic anion Cl-. Complexes 1·2LA and 2·2LA or 1·2Cl and 2·2Cl could self-assemble with Pt···Pt and/or π-π interactions in the nonpolar or aqueous solutions as well. Further increasing the concentration of 1·2Cl and 2·2Cl in aqueous solution, chromonic mesophases with NIR emission (λmax = 988 nm) were obtained. DFT and TD-DFT calculations were performed to gain deep insight into the dication-dication packings and photophysical properties of the complexes. The σ-donating as well as π-accepting character of the N-heterocyclic allenylidene ligand endows complexes with rigid and electron-delocalized coplanar features, which are conducive to achieving the self-assembling processes associated with Pt···Pt and/or π-π interactions.
Read full abstract