Integrators are critical instruments used for magnetic measurement systems (MMSs) in tokamaks, and, currently, the Experimental Advanced Superconducting Tokamak (EAST) has over 600 deployed. However, these integrators, designed with real-time drift compensation, will not be able to support longer pulse operations in the near future due to saturation and drift. To address these issues, this paper proposes a new alternating integration system combining analog integration with drift digital rectification. This system utilizes a microcontroller unit (MCU) to control two parallel analog integrators to work alternatively, compensate their drifts based on their respective error characteristics, and assemble the two integration segments together. The designed architecture provides highly flexible capabilities in operation modes and error correction, which make the system operation and maintenance highly automated. Performance tests on the EAST experiment site show that the prototype integrator can meet the requirements of real-time plasma control for a duration of hour-level.
Read full abstract