BackgroundTo reproduce anatomical reduction and appropriate implant placement/choices during osteosynthesis for elbow fractures, we developed a 3D preoperative planning system. To assess the utility of 3D digital preoperative planning for the osteosynthesis of distal humerus fractures, we evaluated the reproducibility of implant reduction shapes and placements in patients with distal humerus fractures.MethodsTwelve patients with distal humerus fractures who underwent osteosynthesis using 3D preoperative planning were evaluated. Reduction shapes were evaluated by the angle between the diaphysis axis and a line connecting the vertices of the medial epicondyle and the lateral epicondyle (epicondyle angle), and the angle between the diaphysis axis and the articular surface (joint angle) in the coronal plane, and the distance between the anterior diaphysis and the anterior articular surface in the sagittal plane (anterior distance) based on 3D images of the distal humerus. In addition, the implant positions were evaluated by the positions of the proximal and posterior edge of the plate, and the angle of the plate to the epicondyle line. The reproducibility was evaluated by intra-class correlation coefficients of the parameters between pre- and postoperative images.ResultsThe intra-class correlation coefficients were 0.545, 0.802, and 0.372 for the epicondyle angle, joint angle, and anterior distance, respectively. The differences in the measurements between the preoperative plan and postoperative reduction were 2.1 ± 2.1 degrees, 2.3 ± 1.8 degrees, and 2.8 ± 2.0 mm, for the epicondyle angle, joint angle, and anterior distance, respectively. The intra-class correlation coefficients were 0.983, 0.661, and 0.653 for the proximal and posterior plate positions, and the angle to the epicondyle, respectively. The differences in the measurements between the preoperative plan and postoperative reduction were 3.3 ± 2.1 mm, 2.7 ± 1.7 mm and 9.7 ± 9.8 degrees, for the plate positions of proximal and posterior edge, and the angle of the plate to the epicondyle line, respectively. There were significant correlations for the epicondyle angle, joint angle, and plate positions.Conclusions3D preoperative planning for osteosynthesis of distal humerus fracture was reproducible for the reduction shape of the coronal view and the plate positions. It may be helpful for acquiring practical images of osteosynthesis in distal humerus fractures.Level of evidenceLevel III, a case–control study.
Read full abstract