AbstractCharge balance is one of the most important factors for realizing high performance organic light emitting devices (OLEDs). In this work, we provide a novel strategy to improve the charge balance in OLEDs by optimizing the hole injection layer (HIL) as well as the electron transporting layer (ETL) and thereby controlling the charge carrier supplies in the device. First, we develop a p‐dopant material (PD02), with a lowest unoccupied molecular orbit (LUMO) of −4.63 eV, much shallower than that of the commercial material (PD01) of which the LUMO is −5.04 eV. Nevertheless, this enables us to modulate the supply of holes to the emissive layer through tuning doping concentration. We demonstrate that device performances are significantly improved by employing such a scheme. With a 23% molar doping of PD02, a bottom emission red OLED achieves an external quantum efficiency (EQE) of over 30%, an operating voltage of 3.4 V and a LT95 ~15,000 h at 10 mA/cm2, with a Digital Cinema Initiative P3 (DCI‐P3) chromaticity of CIE (X, Y) = (0.68, 0.32). Moreover, the efficiency roll‐off is suppressed up till ~3500 cd/m2, a desirable feature in display applications. The lateral conductivity of by using such HIL is also found to be much lower than that of PD01, resulting in reduced crosstalk among RGB pixels. Next, a new electron transporting material (ETM‐02) with a deep LUMO of −2.86 eV is also introduced to further optimize the charge balance. Although devices with ETM‐02 shows lower voltage and higher EQE, lifetime is compromised. In order to improve lifetime, additional fine tuning of the charge balance is essential. Finally, a second p‐dopant PD03 with a LUMO of −4.91 eV is added to the HIL to further extend the modulation flexibility in the hole injection. A double‐layer HIL consisting of 8 nm of HTM:16% PD02 and 2 nm of HTM:3% PD03, where the former is in contact with anode, is adopted in the device structure. The bottom emission deep red device achieve EQE over 30%, an operating voltage of 3.2 V and an improved LT95 ~13,000 h at 10 mA/cm2 with a BT.2020 range chromaticity of CIE (X, Y) = (0.701, 0.299). In the double HIL configuration, the introduction of PD03 provides one more parameter for tuning and therefore improves the overall device performances.