Accurate detection of microcalcifications ( ) is crucial for the early detection of breast cancer. Some clinical studies have indicated that digital breast tomosynthesis (DBT) systems with a wide angular range have inferior detectability compared with those with a narrow angular range. This study aims to (1)provide guidance for optimizing wide-angle (WA) DBT for improving detectability and (2)prioritize key optimization factors. An in-silico DBT pipeline was constructed to evaluate detectability of a WA DBT system under various imaging conditions: focal spot motion (FSM), angular dose distribution (ADS), detector pixel pitch, and detector electronic noise (EN). Images were simulated using a digital anthropomorphic breast phantom inserted with clusters. Evaluation metrics included the signal-to-noise ratio (SNR) of the filtered channel observer and the area under the receiver operator curve (AUC) of multiple-reader multiple-case analysis. Results showed that FSM degraded sharpness and decreased the SNR and AUC by 5.2% and 1.8%, respectively. Non-uniform ADS increased the SNR by 62.8% and the AUC by 10.2% for filtered backprojection reconstruction with a typical clinical filter setting. When EN decreased from 2000 to 200 electrons, the SNR and AUC increased by 21.6% and 5.0%, respectively. Decreasing the detector pixel pitch from 85 to improved the SNR and AUC by 55.6% and 7.5%, respectively. The combined improvement of a pixel pitch and EN200 was 89.2% in the SNR and 12.8% in the AUC. Based on the magnitude of impact, the priority for enhancing detectability in WA DBT is as follows: (1)utilizing detectors with a small pixel pitch and low EN level, (2)allocating a higher dose to central projections, and (3)reducing FSM. The results from this study can potentially provide guidance for DBT system optimization in the future.
Read full abstract