Nutritive value of five Cenchrus ciliaris (buffel grass) genotypes (IG96-50, IG96-96, IG96-358, IG96-401 and IG96-403) weredetermined. Their sugar contents (>70 mg/g of dry matter) and ensiling potential were evaluated using in vitro batch culture and in vivo studies. Research indicated significant differences (P < 0.05) in the dry matter, organic matter, ether extract, neutral detergent fiber, acid detergent fiber, cellulose and lignin contents of the C. ciliaris genotypes tested. Genotypes also differed (P < 0.05) in total carbohydrates, structural carbohydrates, non-structural carbohydrates and protein fractions. Genotype IG96-96 had the lowest total digestible nutrients, digestible energy and metabolizable energy contents (377.2 g/kg, 6.95 and 5.71 MJ/kg of dry matter, respectively), and net energy values for lactation, maintenance and growth. After 45 days of ensiling, C. ciliaris silages differed (P < 0.05) in dry matter, pH, and lactic acid contents, and their values ranged between 255-339, 4.06-5.17 g/kg of dry matter and 10.8-28.0 g/kg of dry matter, respectively. Maize silage had higher (P < 0.05) Organic Matter (919.5g/kg of dry matter), ether extract (20.4g/kg of dry matter) and hemi-cellulose (272.3 g/kg of dry matter) than IG96-401 and IG96-96 silages. The total carbohydrates and non-structural carbohydrates of maize silage were higher (P < 0.05), while structural carbohydrates were comparable (P < 0.05) with C. ciliaris silages. Sheep on maize silage had (P < 0.05) higher metabolizable energy, lower crude protein, and digestible crude protein intake (g/kg of dry matter) than those on C. ciliaris silage diets. Nitrogen intake and urinary-N excretion were higher (P < 0.05) on genotype IG96-96 silage diet. Overall, this study suggested that certain C. ciliaris genotypes, notably IG96-401 and IG96-96, exhibited nutritive values comparable to maize silage in sheep studies, offering a promising avenue for future exploration as potential alternatives in diversified and sustainable livestock nutrition programs.
Read full abstract