This paper considers a modified Leslie–Gower prey-predator reaction–diffusion model introducing harvesting of both species. Both the temporal and spatiotemporal dynamics of the model have been examined. We have found the stability regions and drawn bifurcation diagrams to determine the harvesting effect on the model, revealing that the harvesting has a stabilizing effect. Local bifurcations, such as transcritical and Hopf bifurcations, appear in the temporal system. For the spatiotemporal model, Turing instability conditions have been determined. The amplitude equation for the critical modes has been derived using multiple time scale analyses by taking the harvesting effort as the bifurcating parameter. Also, we have verified the theoretical results by plotting several kinds of stationary patterns, including stripes, spots, and a mix of stripes and spots. This study’s critical observation is that as harvesting effort rises, the patterns steadily turn into spots, i.e., harvesting influences pattern creation strongly. This fosters a dynamic equilibrium, allowing competitors to maintain distance, optimize resource use and survive.
Read full abstract