The diffusion and adsorption properties of the O2/H2O corpuscles at active sites play a crucial role in the fast photo-electrocatalytic reaction of hydrogen peroxide (H2O2) production. Herein, SnS2 nanosheets with abundant interfacial boundaries and large specific areas are encapsulated into hollow mesoporous carbon spheres (CSs) with flexibility, producing a yolk-shell SnS2@CSs Z-scheme photocatalyst. The nanoconfined microenvironment of SnS2@CSs could enrich O2/H2O in catalyst cavities, which allows sufficient internal O2 transfer, improving the surface chemistry of catalytic O2 to O2− conversion and increasing reaction kinetics. By shaping the mixture of SnS2@CSs and polytetrafluoroethylene (PTFE) on carbon felt (CF) using the vacuum filtration method, the natural air-breathing gas diffusion photoelectrode (AGPE) was prepared, and it can achieve an accumulated concentration of H2O2 about 12 mM after a 10 h stability test from pure water at natural pH without using electrolyte and sacrificial agents. The H2O2 product is upgraded through one downstream route of conversion of H2O2 to sodium perborate. The improved H2O2 production performance could be ascribed to the combination of the confinement effect of SnS2@CSs and the rich triple phase interfaces with the continuous hydrophobic layer and hydrophilic layer to synergistically modulate the photoelectron catalytic microenvironment, which enhanced the transfer of O2 mass and offered a stronger affinity to oxygen bubbles. The strategy of combining the confined material with the air-breathing gas diffusion electrode equips a wide practical range of applications for the synthesis of high-yield hydrogen peroxide.
Read full abstract