We study positive solutions to a steady state reaction diffusion equation arising in population dynamics, namely, \begin{document}$ \begin{equation*} \label{abs} \left\lbrace \begin{matrix}-\Delta u = \lambda u(1-u) ;\; x\in\Omega \frac{\partial u}{\partial \eta}+\gamma\sqrt{\lambda}[(A-u)^2+\epsilon]u = 0; \; x\in\partial \Omega \end{matrix} \right. \end{equation*} $\end{document} where \begin{document}$ \Omega $\end{document} is a bounded domain in \begin{document}$ \mathbb{R}^N $\end{document} ; \begin{document}$ N > 1 $\end{document} with smooth boundary \begin{document}$ \partial \Omega $\end{document} or \begin{document}$ \Omega = (0,1) $\end{document} , \begin{document}$ \frac{\partial u}{\partial \eta} $\end{document} is the outward normal derivative of \begin{document}$ u $\end{document} on \begin{document}$ \partial \Omega $\end{document} , \begin{document}$ \lambda $\end{document} is a domain scaling parameter, \begin{document}$ \gamma $\end{document} is a measure of the exterior matrix ( \begin{document}$ \Omega^c $\end{document} ) hostility, and \begin{document}$ A\in (0,1) $\end{document} and \begin{document}$ \epsilon>0 $\end{document} are constants. The boundary condition here represents a case when the dispersal at the boundary is U-shaped. In particular, the dispersal is decreasing for \begin{document}$ u and increasing for \begin{document}$ u>A $\end{document} . We will establish non-existence, existence, multiplicity and uniqueness results. In particular, we will discuss the occurrence of an Allee effect for certain range of \begin{document}$ \lambda $\end{document} . When \begin{document}$ \Omega = (0,1) $\end{document} we will provide more detailed bifurcation diagrams for positive solutions and their evolution as the hostility parameter \begin{document}$ \gamma $\end{document} varies. Our results indicate that when \begin{document}$ \gamma $\end{document} is large there is no Allee effect for any \begin{document}$ \lambda $\end{document} . We employ a method of sub-supersolutions to obtain existence and multiplicity results when \begin{document}$ N>1 $\end{document} , and the quadrature method to study the case \begin{document}$ N = 1 $\end{document} .
Read full abstract