To investigate the protective and destructive effects of sodium dodecyl sulfate (SDS) in thermal denaturation of proteins, we carried out twelve independent atomistic molecular dynamics (MD) simulations of bovine serum albumin (BSA) and hen egg-white lysozyme (LYZ) in pure water and SDS solutions at 25 and 80 °C, using SDS concentrations of 0.01, 0.05, 0.1 and 1 M. In the case of the BSA in pure water and SDS solutions, it was found that its helicity decreased from 67.02% in reference structure to 35% in pure water at 80 °C due to thermal denaturation, whereas it increased to 49.34, 52.36 and 54% at 0.01, 0.05 and 0.1 M SDS, respectively, owing to the SDS protective effect. In 1 M SDS, however, the surfactant’s protective effect was weak, and consequently the helicity of the BSA decreased to 47.01%. In contrast, no protection by SDS was observed for the LYZ in SDS solutions as the loss of its helices increased with SDS concentration from 0.01 to 1 M. In attempt to interpret the SDS effects molecularly, we calculated the diffusion coefficients of SDS in the protein solutions. The calculated values were found to decrease with increasing SDS concentration in the BSA solutions, but to increase with SDS concentration in the LYZ solutions. The decrease or increase in the diffusion coefficient of SDS was attributed to the net negative or positive charge on the proteins at neutral pH, indicating that electrostatic repulsions or attractions affect diffusivity significantly and can moderate SDS-proteins non-covalent interactions. Communicated by Ramaswamy H. Sarma