Differentiated thyroid cancer is the most common type of thyroid cancer; the types in this category are papillary, follicular, and hurthel cell carcinoma. Up to 20% of DTCs will experience recurrence, although this figure reduces to 5% in low-risk patients. There is still little research on thyroid cancer prediction using a machine learning approach, especially the prediction recurrence of DTCs. This research aims to compare the performance of the Extreme Learning Machine and the Hidden Markov Model using SMOTE in predicting the recurrence of DTCs. The dataset used in this research is differentiated thyroid cancer recurrence from Kaggle. This research methodology comprises preprocessing, data sharing, SMOTE, ELM and HMM modeling algorithms, and evaluation. ELM with SMOTE gets the best results at a ratio of 90:10 with 35 hidden neurons that get an accuracy value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. ELM modeling gets the best results at a ratio of 90:10 with 45 hidden neurons that get an accuracy value of 1.00, precision 1.00, recall 1.00, and AUC 1.00. HMM modeling gets the best value at a ratio of 70:30 with two hidden states and two iterations, which get an accuracy value of 0.8696, precision 0.8696, recall 0.7944, and AUC 0.9575. Last, HMM modeling with SMOTE gets the best results at a ratio of 60:40 with two hidden states and two iterations, with an accuracy value of 0.8696, precision of 0.8832, recall of 0.7848, and AUC of 0.9174. Based on the results of this study, it can be concluded that ELM with SMOTE gets the best performance, followed by ELM without SMOTE, HMM without SMOTE, and finally, HMM with SMOTE. The implication is that ELM with SMOTE can produce high accuracy in predicting the recurrence of DTCs.
Read full abstract