A novel TT-type resonator was proposed for the first time, to our knowledge, to realize differential photoacoustic (PA) detection for trace gas measurement. The special design of the TT-type resonator allows us to install the microphone at the resonant center of the acoustic field to maximize the use of the absorption-induced PA signal. To meet the requirement of low gas consumption and easy integration, the TT-type resonator-based PA cell was fabricated as a fiber-coupled module with an inner volume of only 1.1 ml. For validation, the TT-type PA cell was integrated to a photoacoustic spectroscopy (PAS) system for acetylene detection. As a result, a linearity of 0.99999 was achieved in a concentration range from 0 to 5000 ppm with a noise equivalent sensitivity of 101 ppb. The proposed TT-type resonator contributes a new style of PA cell structure to the field of PAS gas detection, combining the advantages of easy integration, low gas consumption, differential detection, and photoacoustic enhancement together.